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A B S T R A C T   

The COVID-19 pandemic has forced numerous businesses such as department stores and supermarkets to limit 
the number of shoppers inside the store at any given time to minimize infection rates. We construct and analyze 
two models designed to optimize queue sizes and customer waiting times to ensure safety. In both models, 
customers arrive randomly at the store and, after receiving permission to enter, pass through two service phases: 
shopping and payment. Each customer spends a random period of time shopping (first phase) and then proceeds 
to the payment area of the store (second phase) where cashiers are assigned to serve customers. We propose a 
novel approach by which to calculate the risk of a customer being infected while queueing outside the store, 
while shopping, and while checking out with a cashier. The risk is proportional to the second factorial moment of 
the number of customers occupying the space in each phase of the shopping route. We derive equilibrium 
strategies for a Stackelberg game in which the authority acts as a leader who first chooses the maximum number 
of customers allowed inside the store to minimize the risk of infection. In the first model, store’ management 
chooses the number of cashiers to provide to minimize its operational costs and its customers’ implied waiting 
costs based on the number allowed in the store. In the second model, the store partitions its total space into two 
separate areas – one for shoppers and one for the cashiers and payers – to increase cashiers’ safety. Our findings 
and analysis are useful and applicable for authorities and businesses alike in their efforts to protect both cus
tomers and employees while reducing associated costs.   

1. Introduction 

The COVID-19 pandemic has upended nearly every type of business, 
but one of the more dramatic impacts early in the pandemic has been 
long queues of customers outside supermarkets. The need to reduce 
crowding and queueing has forced store managers worldwide to im
plement regulations such as “maximum shoppers at store” and “max
imum number of customers in checkout areas.” According to a recent 
report by BBC News (2020), supermarkets in the United Kingdom are 
posting staff members at the doors who allow a maximum of 75 
shoppers inside the store at a time. Israeli i24News (2020) reports that 
all business owners in Israel are required to place signs at store en
trances specifying the maximum number of people allowed on the 
premises. As a result of these maximum headcount policies, sometimes- 
long queues are forming outside these businesses. 

Evidence is growing that infection with COVID-19 is associated with 
prolonged periods of exposure to infected individuals (CNN, 2020). The 
longer one spends in a crowded environment with people who may be 
infected, the greater the risk of getting sick (Barr, 2020). Therefore, 
greater numbers of people in stores and queues increase the likelihood 

of infection and make it difficult to ensure that social distancing re
strictions are maintained (Long et al., 2020). Customers waiting outside 
of stores can maintain adequate social distance but are still potentially 
exposed to infection (Gupta et al., 2020). It is also critical to keep 
workers safe during the pandemic, and greater efforts are needed to 
reduce the number of customers waiting at cashier areas to allow em
ployees to maintain social distance from customers (see, e.g.,  
Government of the United Kingdom (2020)). Thus, it is critical to 
control and manage queue sizes and customer waiting times to ensure 
the safety of customers and workers. 

Systems for reducing the number customers in retail stores and re
ducing waiting times have been studied intensively in the literature 
using queueing theory. Recently, several queueing models have been 
constructed to study the impact of the COVID-19 pandemic (see, e.g.,  
Kaplan, 2020; Alban et al., 2020; Long et al., 2020). In this paper, we 
construct and analyze two models to optimize queueing when there is a 
limit on the number of customers allowed inside a store. Customers 
arrive randomly at the store and, after receiving permission to enter, 
pass through two service phases: shopping and payment. Each customer 
first spends a random period of time shopping (first phase) and then 
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proceeds to the payment area of the store (second phase) where cash
iers are assigned to serve customers. When the store is occupied by the 
maximum number of allowed customers, newly arriving customers wait 
outside in line until permitted to enter. In the first model, after com
pleting shopping, the customer proceeds to the payment phase and ei
ther is served immediately by a free cashier or waits in a line forming in 
front of the cashiers. In the second model, we analyze reducing waiting 
time in the payment queue (and ensuring the safety of cashiers and 
customers) by allowing store management to set aside a separate 
waiting space with limited capacity adjacent to the cashiers. For each 
model, we derive the resulting stability condition and obtain closed 
form expressions for mean queue sizes and mean waiting times. 

To address the issues of controlling and managing queue sizes to 
ensure the safety of customers and workers while reducing a store’s 
associated costs, we employ a game-theoretic model within the 
queueing framework to investigate equilibrium strategies in terms of 
capacity and number of servers. In the game, the authority chooses a 
maximum number of customers allowed inside the store at a time to 
minimize the risk of transmission. We propose a novel measure by 
which to evaluate the risk of infection in this scenario. When L custo
mers are present in the store, each customer can be infected by (the 
other) L – 1 customers. Thus, we estimate the risk of infection as pro
portional to the second factorial moment L LE[ ( 1)]. Specifically, we 
measure customers’ risk of infection along their waiting, shopping, and 
payment routes. Since the risk of infection is lower in more-open areas 
and the risk could depend on customers’ ability to maintain social 
distance, we assign a unique weight to each phase and determine a 
combined risk measure. Store management wants to minimize the total 
cost associated with the restrictions, which is comprised of payments it 
must make (i.e., cashiers’ salaries and the cost of designated waiting 
space) and the cost of customers’ expected waiting times. Management 
chooses the number of cashiers to run and, in the second model, the 
capacity of the waiting space set up near the cashiers. 

Our paper makes three important contributions. First, it tackles a 
relevant COVID-19 safety problem by developing nonclassical multi- 
server queueing models involving two service phases, a limit on the 
number of customers in each phase, and internal blocking and delays. 
We derive and interpret the corresponding stability conditions. Second, 
we construct a measure to estimate customers’ mean risk of infection. 
The risk is proportional to the second factorial moment of the number 
of customers occupying the space in each phase of the shopping route. 
Third, within the queueing framework, we formulate a game-theoretic 
model to investigate equilibrium strategies in terms of capacity and 
number of servers. Insights from our models are useful to government 
authorities and businesses as they determine a safe number of custo
mers and employees while containing the associated costs of restric
tions to businesses. 

2. The M-model: Maximum number of customers allowed inside 
the store 

2.1. Description, formulation, and analysis 

In the M-model, customers arrive at a store such as a supermarket or 
department store according to a Poisson process with rate λ. The 
number of cashiers in the store is c 1, each with a service duration 
exponentially distributed with mean 1/µ. The authorities have imposed 
a limit of M ≥ c on the maximum number of customers allowed inside 
the store at one time. A customer who arrives when there are M cus
tomers already in the store must wait outside in a line (an unlimited 
queue) until permitted to enter. After entering, each customer passes 
through two “service” phases – shopping and payment. In the first 
phase, the customer spends a random amount of time exponentially 
distributed with mean 1/ξ. Upon completing shopping, the customer 
proceeds to the payment phase and either is served immediately by a 
free cashier or waits in a line forming in front of the cashiers. Shopping 

times, payment times, and the arrival process are independent. This 
two-phase service process can appear to be a two-site tandem network 
(see, e.g., Perlman and Yechiali (2020)), but that is not the case since 
the two service stages are dependent via the imposed upper limit on the 
total number of customers allowed inside the store in both phases. In 
addition, in the current model, the time deterioration considered in  
Perlman and Yechiali (2020) is replaced by the increased risk of in
fection associated with customer crowding. 

Let L1 denote the number of customers either in the shopping phase 
or waiting outside the store. Note that L1 is unbounded (since we do not 
restrict the number of customers allowed to wait outside). Let L2 denote 
the number of customers in the payment phase who are either being 
served by a cashier or are waiting in line for a free cashier. The system 
can be formulated as a two-dimensional quality-by-design process with 
a state-space of 

= = = =S L L i j i j M{( , ) ( , ): 0, 1, 2, 3, ...; 0, 1, 2, 3, ..., }.1 2

The transition rate from state i j( , ) to state +i j( 1, ) equals the ar
rival rate λ; the transition rate to state i j( , 1) is µ j c·min( , ) since 
there are c servers. When +i j M , there are i customers in the 
shopping phase and the transition rate to +i j( 1, 1) is i . Otherwise, 
when + >i j M , the transition rate from i j( , ) to +i j( 1, 1) is 
M j( ) since there are M j( ) customers in the shopping phase. Fig. 1 

presents a transition-rate diagram of the M-model system. 
The system’s two-dimensional steady-state probabilities are defined 

as = = =P P L i L j( , ),ij 1 2 =i 0, 1, 2, 3, ... =j M0, 1, 2, ..., . The prob
ability vectors are defined as =P i i M¯ (( , 0), ...,( , ))i for =i 0, 1, 2, ...
where P̄i corresponds to the ith column in the transition-rate diagram. 
Then, the vector of all system state probabilities, 

=P P P P P¯ ( ¯ , ¯ , ¯ , ..., ¯ , ...)M0 1 2 , satisfies 

=PQ¯ 0̄ (1)  

=P e¯· ¯ 1 (2) 

where Q is the so-called infinitesimal generator matrix (see, e.g. Neuts, 
1981, p.82; Perlman et al., 2018), 0̄ is a row vector of zeros, and ē is a 
column vector of ones. The generator matrix Q is given by 

=Q

B A 0 . . .
D B A 0 . . .
0 D B A 0 . . .

0

D B A 0
0 D B A 0

0 A A A 0
0 A A A . . .

M M

M M

0 0

1 1 0

2 2 0

1 1 0

0

2 1 0

2 1 0

Let = dD [ ]i i
n k , =i M1, 2, 3, ..., where di

n k is the element in column 
n and row k. Note that only the upper diagonal of Di has positive ele
ments; all other elements equal zero. 

= = =
=

=
+ +d n M d

n M
n M

0, 1, 2, ..., 1;
2 0, 1, 2, ..., 2

1
;n n n n

1
1,

2
1,

=

=
=
=

=

=+d

c n M c
c n M c
c n M c

n M

0, 1, 2, ...,
( 1) 1
( 2) 2

1

; and D Ac
n n

M
1,

2

Let = = +b b bB [ ] [ ] [ ]i i
n k

i
n k

i
n k

1 2 =i M0, 1, 2, 3, ..., where bi
n k is the 

element in column n and row k. Then, 
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+ =
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= + =
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µ
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while all other elements equal zero. 

= = = =
=

+ +b b b b and b n M
n M

, 0, 1, 2, ..., 1
0

n n n n n n n n n n
11

,
01

,
11

, 1
01

, 1
12

,

and all other elements equal zero; 

= = =

=
=
=

=

+ +b b b b and b

c n M c
c n M c
c n M c

n M

,

0, 1, 2, ...,
( 1) 1
( 2) 2

0

c
n n n n

c
n n n n

c
n n

1
,

01
,

1
, 1

01
, 1

2
,

all other elements equal zero; and =B A .M 1
The matrices A0, A1, and A2 are square matrices of order (M + 1) as 

follows: 

=A I0

=

M
M

M cA

0 0
0 ( 1) 0

0 ( ) 0

0 2 0
0

0

2

Let = + +A A A A0 1 2. Then, 

Matrix A defines the underlying process of the system, which is 
depicted in Fig. 2 as a linear Markov process with M + 1 states. In fact, 
the process defined by A can be considered as a machine repair problem 
in which c 1 repairmen maintain M c machines. The lifetime of 
each machine is exponentially distributed with parameter and the 
repair time of a machine by a repairman is exponential with µ intensity. 
The state of the system is the number of unbroken machines. 

Denote by =¯ ( , , ..., )M0 1 the stationary probability vector sa
tisfying =¯ A 0̄ and =e¯ · ¯ 1. 

Proposition 1. The solution of =¯ A 0̄, =e¯ · ¯ 1 is 

= +
= = +

( )µ µ
M
k

M c
M k c

M
c

( )!
( )!

1

k

c k

k c

M

k c

k

0
0 1

1

=
=

= +( )
( )

( )
M
k k c

M
c k c M

0, 1, 2, ...,

1, ...,

µ

µ

k

k

M c
M k c

k

0

( ) !
( ) !

1
0k c

The system stability condition (Neuts, 1981) is <e e¯ A ¯ ¯ A ¯0 2 , and 
the system is stable if and only if < = M k( )k

M
k0

1 . 
Next, we explore the stability condition stated in Proposition 1 and 

provide intuition for the results. In particular, the righthand side of the 
stability condition approaches µc as approaches infinity, and the 
system then becomes Erlang’s delay queue: an M(λ)/M(µ)/c queue with 
arrival rate λ and c parallel servers who each serve at rate µ. The 
stability condition is then < µc .

As µ approaches infinity, the mean total service time for each cos
tumer is 1/ so the system becomes an Erlang’s delay queue with M
parallel servers and the stability condition is < M . 

Similarly, when M approaches infinity, the shopping phase becomes 

an M(λ)/M( )/ queue with an output Poisson process (λ). Therefore, 
the payment phase becomes an M(λ)/M(µ)/c queue and the stability 
condition is < µc . When =c M, each customer who completes 
shopping goes immediately to the payment phase, and the customer’s 
mean sojourn time is +µ

1 1 . When there are =M c customers in the 

store, the combined service rate is 
+
M

µ
1 1 and the stability condition is 

> +µ
M 1 1 . Finally, when there is only a single server (cashier), the 
right-hand side of the stability condition equals 

+

( )
( )
µ

RHS
M M

M

,

1,

µ

µM

where =M z e t dt( , ) z
t M( 1) is the incomplete Gamma function. 

As in Neuts (1981), a rate matrix R exists that satisfies 

+ + =A RA R A 00 1
2

2 (3) 

while the probability vectors satisfy 

=

+
+ +

+ +

+ +
+ +

+ +
+

µ µ
µ µ

µ
µ

µ µ
µ µ

M
M

M

c M c cµ
cµ M c c

c c
c c

A

( )
( ( 1) )

2 ( ( 2) )

( ( ) )
( ( 1) )

( )
( )

1

=

+
+

+
+

+

µ µ
µ µ

µ µ
µ µ

µ µ
µ µ

M M
M M

M M

c c M c M c
c c M c M c

c c
c c

A

( ( 1) ) ( 1)
2 (2 ( 2) ) ( 2)

( ( ) ) ( )
( ( 1) ) ( 1)

( )
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= = …+P P k¯ ¯ R 0, 1, 2, .M k M
k (4)  

R is the minimal non-negative solution of Eq. (3) and is usually 
calculated numerically via a successive substitution algorithm (see, e.g.,  
Harchol-Balter, 2013). See Hanukov and Yechiali (2020) for cases in 
which matrix R can be expressed explicitly. 

By Eqs. (1) and (2), the balance equations are 

+ =P P¯ B ¯ D 0̄0 0 1 1 (5)  

+ + = =+ + j MP̄ A P̄ B P̄ D 0̄ 1, 2, ..., 1j j j1 0 j 1 j  1 (6)  

= + =
= =

P e P e P I R e¯ ¯ ¯ ¯ ¯ [ ] ¯ 1
j

j
j

M

j M
0 0

1
1

(7)  

The +M 1 Eqs. (5)–(7) uniquely determine the boundary prob
ability vectors P P P P¯ , ¯ , ¯ , ..., M̄0 1 2 . 

2.2. Risk of infection 

Since the risk of infection increases as the number of customers in a 
store increases, we estimate the risk of infection as proportional to 

L LE[ ( 1)]. That is, when L customers are present in the store, each 
one can be infected by the other L 1 customers. Also, the risk of in
fection is lower in more-open areas and could depend on whether social 
distance can be and is maintained. Therefore, in this section we cal
culate the combined risk of infection for customers along their waiting, 
shopping, and payment routes (phases). Let L1

SHOP denote the number 

of shoppers and let L1
OUT denote the number of customers lining up 

outside the store with L1 = L1
SHOP + L1

OUT. We start by calculating 
LE[ ]1 . 

= = +

= + +

= = =

=

L iP e iP e P iR e

iP e P M I R I R e

E[ ] ¯ · ¯ ¯ · ¯ ¯ ¯

¯· ¯ ¯ [( 1)[ ] [ ] ] ¯

i
i

i

M

i M
i M

i M

i

M

i M

1
0 0

1

0

1
1 2

(8)  

The risk to shoppers of being infected is considered proportional to 
L LE[ ( 1)]SHOP SHOP

1 1 . The risk of customers waiting outside the store is 
proportional to L L[ ( 1)]OUT OUT

1 1 . 

Proposition 2. Let 

= = = >
+

g i i i i i i i M g g i M¯ ( , , , ..., , 1, 2, ...,1, 0), 0, 1, ..., ; ¯ ¯i
M i i

i M
1

= =

= >
+

g i i i i i i i M

g g i M

¯ ( , , , ..., , ( 1) , ( 2) , ...,1, 0), 0, 1, ..., ;

¯ ¯

i
M i i

i M

2 2 2 2 2

1

2 2

2 2

=
=

+ = +
+v

i i M

i M i M i i M
¯

(0, 0, 0, ...,0 , 1, 2, 3, ..., ) 0, 1, 2, ...,

( , 1, ..., ) 1, ...
andi M i i1

Fig. 2. Transition-rate diagram of A for the M- 
model. 

Fig. 1. Transition-rate diagram for the M-model.  
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=
=

+ = +
+v

i i M

i M i M i i M
¯

(0, 0, 0, ...,0 , 1, 2 , 3 , ..., ) 0, 1, 2, ...,

(( ) , ( 1) , ..., ) 1, ...
i M i i
2

1

2 2 2

2 2 2

be four sets of column vectors, each of size +M( 1). Then,  

i.  
= + = + =

+
= = = =

=

L P g P g P g P R g

P g P I R g

E[ ] ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
¯ ¯ ¯ [ ] ¯

SHOP
i
M

i i i M i M i
M

i i M i M
i M

M

i
M

i i M M

1 0
1

0
1

0
1 1

.  

ii. = = + =

+
= = =

=

L P g P g P R g

P g P I R g

E[( ) ] ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ [ ] ¯

SHOP
i i i i

M
i i M i M

i M
M

i
M

i i M M

1
2

0
2

0
1 2 2

0
1 2 1 2

.  

iii. =L L LE[ ] E[ ] E[ ]OUT SHOP
1 1 1 .  

iv. = =L P vE[( ) ] ¯ ¯OUT
i i i1

2
0

2 . 
Proof. In the case = =L i L jand1 2 such that +i j M, there are i 
customers in the shopping phase, j customers in the payment phase, and 
no customers waiting outside the store. In the case + >i j M, there are 

+i j M customers waiting outside since only M customers are 
allowed inside. Since there are j customers in the payment phase, 
M j customers are in the shopping phase. □ 

Similarly, the risk of customers in the payment phase is proportional 
to L LE[ ( 1)]PAY PAY

2 2 . 

Proposition 3. Let = =z c M z c M¯ (0, 1, 2, ..., , ..., ), ¯ (0, 1, 2 , ..., , ..., )2 2 2 2 be 
two column vectors each of size (M + 1). Then,  

i. = = + =

+
= = =

=

L P z P z P z

P P I R z

E[ ] ( ¯ ) ¯ ( ¯ ) ¯ ( ¯ ) ¯

( ¯ ¯ [ ] ) ¯

PAY
i i i

M
i i M i

i
M

i M

2 0 0
1

0
1 1

.  

ii. = = + =

+
= = =

=

L P z P z P z

P P I R z

E[( ) ] ( ¯ ) ¯ ( ¯ ) ¯ ( ¯ ) ¯

( ¯ ¯ [ ] ) ¯

PAY
i i i

M
i i M i

i
M

i M

2
2

0
2

0
1 2 2

0
1 1 2

. 

When the system is stable, the mean rate of arrival rate at the 
shopping phase is . Similarly, the mean rate of arrival at the payment 
phase is also . Applying Little’s Law, one can calculate the mean 
waiting times: 

= = =W L W L W LE[ ] E[ ] E[ ] E[ ] and E[ ] E[ ] .SHOP
SHOP

OUT
OUT

PAY
PAY

1 1 2

3. The NM-model: Maximum number of customers at the cashier 
area and shopping inside the store 

3.1. Model description, formulation, and analysis 

We now model a setting in which the store sets aside a separate 
waiting space near the cashiers for at most N ≥ 0 customers in the 
payment phase and those customers wait in a single line in the desig
nated area (if necessary) to be admitted by the next free cashier. As in 
the M-model, the authorities in this model have imposed a limit, M, on 
the total number of customers allowed inside the store. Thus, in this 
setting, the store is divided into two separate areas: (i) the payment area 
with c ≥ 1 parallel cashiers and waiting space of size N customers and 
(ii) the shopping area, in which the maximum number of customers al
lowed, K. Thus, the maximum number of customers is the store is 

= + +M c N K . 
In this model, a customer first spends a random period of time in the 

shopping phase/area that is exponentially distributed with mean 1/ξ 
and then proceeds to the payment phase/area. When there are exactly 
c + N payers, this customer “orbits” in the shopping area for another 
exponentially distributed period of time with the same mean 1/ξ (see, 
e.g., Avrachenkov et al., 2014; Perel and Yechiali, 2014). Otherwise, 
when the number of customers in the cashier area is less than c + N, the 

Fig. 3. Transition-rate diagram for the NM-model.  
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customer enters the cashier area and becomes a payer. When at least 
one of the cashiers is not busy, the payer proceeds directly to a cashier 
and pays. As in the M-model, the payment (service) duration is ex
ponentially distributed with mean 1/µ. All shopping, service, and orbit 
times are independent of each other and independent of the arrival 
process. 

Let L1
SHOP denote the number of customers in the shopping area and 

let L1
OUT denote the number of customers lining up outside the store. 

Let L1 = L1
SHOP + L1

OUT. Let L2 denote the number of customers in the 
cashier area. Then, the system’s state-space is 

= = = = +S L L i j i j c N{( , ) ( , ): 0, 1, 2, 3, ...; 0, 1, 2, 3, ..., }1 2

The transition-rate diagram for this system is depicted in Fig. 3. 
The system’s two-dimensional steady-state probabilities are defined 

as = = =P P L i L j( , ),ij 1 2 =i 0, 1, 2, 3, ...; = +j c N0, 1, 2, ..., . The 
states are then arranged in a lexicographic order such that the state 
space is 

= + +
+ +

S
c c c N

c c c N
{(0, 0), (0, 1), (0, 2), ...,(0, ), (0, 1), ...,(0, ); (1, 0), (1, 1)
, (1, 2), ...,(1, ), (1, ). ..(1, ); ...

+ +i i i i c i c i c N...;( , 0), ( , 1), ( , 2), ...,( , ), ( , ). ..( , ); ...}

The probability vectors are defined as = +P i i c N¯ (( , 0), ...,( , ))i for 
=i 0, 1, 2, ... where P̄i corresponds to the ith column in the transition- 

rate diagram. Then, the vector of all of the system state probabilities, 
=P P P P P¯ ( ¯ , ¯ , ¯ , ..., ¯ , ...)K0 1 2 , satisfies Eqs. (1) and (2) where the generator 

matrix Q is given by 

=Q

B A 0 . . .
D B A 0 . . .
0 D B A 0 . . .

0

D B A 0
0 D B A 0

0 A A A 0
0 A A A . . .

K K

K K

0 0

1 1 0

2 2 0

1 1 0

0

2 1 0

2 1 0

where 

= =

i
i

i
i

i KD

0
0

0
0

1, 2, 3, ...,i

=A I0 , =A  B1 K, and =A  D2 K. The matrix A0 and all square matrices Bj 

and Bi are of order (c + N + 1). Again, there exists a rate matrix R that 
satisfies 

+ + =A RA R A 00 1
2

2 (9) 

where the probability vectors satisfy 

= =+P P R i¯ ¯ 0, 1, 2, ....K i K
i

1 1 (10)  

Combining Eqs. (2) and (10), we obtain 

= + =
=

P e P e P I R e¯· ¯ ¯ · ¯ ¯ [ ] · ¯ 1.
i

K

i K
0

1
1

(11)  

The first K equations of Eq. (1) are 

+ =P P¯ B ¯ D 0̄0 0 1 1 (12)  

+ + = =+ + j KP̄ A P̄ B P̄ D 0̄ 1, 2, 3, ..., 1j j j1 0 j 1 j  1 (13)  

Eqs. (12) and (13) yield the boundary probability vectors 
(P P P P¯ , ¯ , ¯ , ..., K̄0 1 2 ) needed for calculation of the performance measures in 
the sequel. 

Let = + +A A A A0 1 2. Then, 

The matrix A defining the underlying process of this system is 
equivalent to a truncated Erlang’s model of Poisson arrival with rate K , 
c parallel exponential servers each with rate µ, and an additional 
waiting buffer of size N. Fig. 4 presents its transition-rate diagram. 

Proposition 5. Let =a µ
K , = µ

K
c . The system is stable if and only if 

< +
=

+
K a

c
a
i

a
c

1
! ! !

1
1

c
N

i

c i c N

0

1 1 1

Proof. Matrix A has a stationary probability vector 
= +¯ ( , , ..., , ..., )c c N0 1 that satisfies =¯ A 0̄ and =e¯ · ¯ 1. Then, 
= =i c1, 2, ..., .i

a
i ! 0

i
, = =+ n N0, 1, 2, ...,c n c

n , and 

=

+
+ +

+ +

+ +

+

= …

µ µ
µ µ

µ µ

µ µ

j
j

j

c j c

c c

j KB

( )
( )

2 ( 2 )

( )

( )

0, 1, 2, 3, , ,j

=

+
+

+
+

+

µ µ
µ µ

µ µ
µ µ

µ µ
µ µ

A

K K
K K

K K

c c K K
c c K K

c c K K
c c

( )
2 (2 )

( )
( )

( )

Y. Perlman and U. Yechiali   Safety Science 132 (2020) 104987

6



= +=
+

i
c a

i
a
c0 0

1
! !

1
1

1i c N 1
. The stability condition is given by Neuts 

(1981) as <e e¯ A ¯ ¯ A ¯,0 2 which translates into 
< =+ ( )K K(1 ) 1 .c N

a
c

N
! 0
c

□ 

Set +=
+( )RHS K 1NM

a
c

N
i
c a

i
a
c! 0

1
! !

1
1

1c i c N 1
. Corollary 1 

specifies the value of RHSNM for some special cases. 

Corollary 1.   

(i) =RHS Klim .
c

NM

(ii) When =N 0, = =
+

=

=

RHS KNM

cK c

c

,

1,

i
c ai

i

i
c ai

i

K
µ

K
µ

0
1

!

0 !

. In particular, when 

N = 0 and c = 1, =
+

RHSNM
1

µ K
1 1 .  

(iii) = µRHS clim .NM

(iv) =RHS Klim .
µ

NM

It follows from Corollary 1(i) that, when the number of cashiers is 
infinitely large, only the shopping area determines the stability of the 
system. As such, the shopping area is a classical Erlang’s delay model 
with Poisson arrival rate and K parallel servers, each with rate , and 
the stability condition is < K . When =N 0, the right-hand side of the 
stability condition can be written explicitly or with the aid of the in
complete Gamma function (see Corollary 1(ii)). For the special case in 
which =N 0 and =c 1, the combined service rate when there are K 
shoppers is Kξ. Thus the stability condition is > +µ K

1 1 1 . It follows 
from Corollary 1(iii) that, when is infinitely large, customers do not 
spend time in the shopping area and move immediately to the payment 
area. Therefore, the system is reduced to a classical M/M/c queue with 

Fig. 5. Effect of arrival rate (λ) on performance measures for the M-model.  

Fig. 6. Effect of arrival rate (λ) on performance measures for the NM-model.  

Fig. 4. Transition-rate diagram of A for the NM- 
model. 
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stability condition < µc . Finally, when µ approaches infinity, the 
system becomes the M( )/M( )/K queue with stability condition < K
(Corollary 1(iv)). 

3.2. Risk of infection 

As in the M-model, the risk of customers being infected at each area 
is estimated as L L

L L L L
E[( ) ] E[ ],
E[( ) ] E[ ] and E[( ) ] E[ ]

OUT OUT

SHOP SHOP PAY PAY
1

2
1

1
2

1 2
2

2

, re

spectively. The following proposition shows how these measures are 
calculated. 

Proposition 5. Let = + =u c c N u¯ (0, 1, 2, ..., , ..., ) and ¯2

+c c N(0, 1, 2 , ..., , ...,( ) )2 2 2 be two column vectors, each of size 
+ +c N( 1). Then,  

i. =L P I R I R eE[ ] ¯ ([ ] [ ] )· ¯OUT
K1

2 1 .  
ii. = = +L i K P eE[( ) ] ( ) ¯· ¯OUT

i K i1
2

1
2 .  

iii. = += =( )L iP e K P eE[ ] ¯· ¯ 1 ¯ · ¯SHOP
i
K

i j
K

j1 0 0 .  

iv. = += =( )L i P e K P eE[( ) ] ¯ · ¯ 1 ¯ · ¯SHOP
i
K

i j
K

j1
2

0
2 2

0 .  

v. = +=L P P I R uE[ ] ( ¯ ¯ [ ] ) ¯PAY
i
K

i K2 0
1 1 .  

vi. = +=L P P I R uE[( ) ] ( ¯ ¯ [ ] ) ¯PAY
i
K

i K2
2

0
1 1 2. 

Proof.    

(i) = = + =

=
=

=

L iP L K i

P iR e P I R I R e

E[ ] ( )
¯ · ¯ ¯ ([ ] [ ] )· ¯

OUT
i

K i
i

K

1 1 1

1
2 1

.   

(iii) = = + = + =

+
= =

= =

L iP L i K P L K m

iP e K P e

E[ ] ( ) ( )
¯ · ¯ (1 ¯ · ¯).

SHOP
i
K

m

i
K

i i
K

i

1 0 1 1 1

0 0
Similar to the proof of Proposition 3. □ 

Again, if the system is stable, the mean rate of arrival to the shop
ping area is . Similarly, the mean rate of arrival to the cashier area is 
also . Applying Little’s Law, the mean waiting time outside the store is 

= =WE[ ]OUT L P I R I R eE[ ] ¯ ([ ] [ ] )·¯OUT
M1 2 1

. The mean waiting time at 

the shopping area is =WE[ ]SHOP LE[ ]SHOP
1 and the mean waiting time at 

the payer area is =WE[ ] .PAY LE[ ]PAY
2

4. Sensitivity analysis 

We next study the effect of the two models’ parameters on the 
performance measures. Let the arrival rate, service rate, and shopping 
rate, respectively, be = = =µ18, 10, and 3 customers per hour. 
Set M = 15, N = 5, and c = 2 so that the maximum number of cus
tomers in the shopping area is = =K 15 5 2 8. For these values, the 
right-hand side of the stability condition is =RHS 19.927M in the M- 
model and =RHS 18.625NM in the NM-model. Note that <RHS RHSNM M
since there are additional restrictions on the NM-model. 

When we change the arrival rate from 0 to 18, the mean number 
of customers and corresponding mean waiting times for customers, 
respectively, are E L E W[ ] and [ ]OUT OUT

1 outside the store, 
E L E W( [ ], [ ])SHOP SHOP

1 at the shopping area, and E L E W( [ ], [ ])PAY PAY
2

at the cashier area, as depicted in Figs. 5 and 6. 
Figs. 5 and 6 show that there are no differences in the values of the 

performance measures under the two models for outside the store, in 
the shopping area, and in the payment area when the system is not 
congested (i.e., < < <RHS RHSNM M). That is, for small values of in 
uncongested systems, almost no customers wait outside the store, cus
tomers complete the shopping phase after an average of 1/ units of 
time, and the mean waiting times (sojourn) for payers is about µ1/ . 
However, when the system is congested, the two model performance 
measures behave differently. The number of customers waiting outside 
the store increases more rapidly under the NM-model than under the M- 
model. As a result, both the number of customers waiting outside and 
their mean waiting times are greater under the NM-model. The mean 
waiting times in the shopping phase under the M-model equals 1/ since 
leaving the shopping area is never delayed. However, under the NM- 
model (Fig. 6), which has a limit on the number of customers who can 
wait in the payment area (N = 5), some customers have to delay 
leaving the shopping area because the payment waiting space is full. 
Thus, both the number of shoppers and their mean waiting times are 
greater under the NM-model. The mean number of payers and their 

a:  M-model b:  NM-model 

Fig. 7. Effect of cashier service rate (µ) on expected waiting times.  
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mean waiting times are lower in the NM-model than in the M-model 
because only a limited number of payers, +c N M, are allowed in the 
payment area under the NM-model. 

Fig. 7 shows the results of a change in the cashier service rate on the 
three mean waiting times for the M-model (7a) and NM-model (7b). 
Note that the minimal value of µ that maintains the stability conditions 
is 10. Hence, we study the effect of increasing the service rate up to 

=µ 40. 
We find that increasing the service rate has no impact on mean 

waiting time in the shopping phase under the M-model since no re
strictions are placed on shopping time in that case and shopping mean 
waiting time equals 1/ . However, when the system under the NM- 

model is congested, the mean waiting times for shoppers is greater than 
1/ . Again, this result follows since there is a limit on the number of 
payers allowed in the payment waiting area, causing some shoppers to 
have to orbit in the shopping area (they are in the payment phase but 
must remain in the shopping area). As the service rate increases, mean 
waiting times for payers and customers outside the store clearly de
crease. Under both models, as µ increases, payer mean waiting times 
approaches = µE W[ ] 1/PAY since fewer and fewer customers have to 
wait in line in the payment area. For outside customers, the mean 
waiting times reduces to zero as µ increases under the M-model and 
reaches a positive limit under the NM-model. This follows since, in the 
NM-model, the total number of customers inside the store is rigidly 
assigned to two separate areas, reducing the efficiency of the system. 

The impacts of changing the time spent shopping ( ) on the re
spective mean waiting times for the M-model and NM-model are de
picted in Fig. 8. The smallest value of for which the system is stable is 
2 in the M-model and 3 in the NM-model. 

As previously noted, the mean waiting times for shoppers equals 1/
under the M-model and is greater under the NM-model because of re
striction in the payment area. When increasing , the mean waiting 
times of outside customers in both models approaches a limit that de
pends on the other model parameters. The mean payer wait time ap
proaches 0.416 under the M-model and 0.27 under the NM-model. This 
follows since only N customers are allowed to wait at the payment area 
under the NM-model; under the M-model, up to M – c customers can 
wait there to be served by cashiers. The mean waiting times of custo
mers outside approaches a positive limit since a queue is forming at the 
cashier area, which delays permission for new customers to enter the 
store. 

The effect of the number of cashiers and of the maximum number of 
customers in the store on mean waiting times is depicted in Figs. 9 and  
10. The minimal values of c that maintain the stability conditions are 2. 
Thus, we examine values of c {2, 3, 4, 5}. Changing the number of 
cashiers, as expected, has no impact on shoppers’ expected wait time. 
However, under the M-model, an increase in the number of cashiers 
from 2 to 3 decreases the arrival ratio RHS/ M from =18/19.9 93% to 
18/28.2 = 63%, and when =c 4, the arrival ratio is =RHS/ 55%.M

Fig. 8. Effect of mean shopping time ( ) on expected waiting times.  

Fig. 9. Effect of number of cashiers (c) on expected waiting times for the M- 
model. 
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Thus, adding one cashier (moving from =c 2 to =c 3) has a major 
impact on the mean waiting time of customers outside the store – the 
outside wait time becomes almost negligible – and a major impact on 
the mean payer wait time. When =c 4, almost no customers wait 
outside the store and the mean payer wait time approaches 

= µE W[ ] 1/PAY . 
Under the M-model, the minimal value of the number of customers 

in the store that maintains the stability condition is M = 10. Thus, we 
let M {10, 11, ...,18}. As depicted in Fig. 10, changing the value of M 
has no impact on shopper waiting time since, when the system is stable, 
the mean number of shoppers is / and =E W[ ] 1/ .SHOP Increasing 
the number of customers allowed in the store clearly reduces E W[ ]OUT

and increases E W[ ].PAY

Remember that the store in the NM-model is divided into separate 
shopping and payment areas, both of which are restricted in terms of 
the number of customers who can occupy those spaces. The shopping 
area is limited to K customers and the payment area at the cashier space 
is limited to +c N customers. Thus, increasing the value of c, N, or K 
(see Fig. 11) increases the value of the maximum number of customers 
who can be in the store = + +M c N K( ).

As in the M-model (Fig. 9), increasing the number of cashiers (c) in 
the NM-model results in a diminishing reduction in mean waiting times 
of customers lining up outside and of payers. That is, as c increases, 
E W[ ]OUT approaches zero and E W[ ]PAY approaches µ1/ . However, in
creasing c under the NM-model also reduces E W[ ]SHOP since a greater 
number of cashiers increases the service rate at the payment area. 
Customers can proceed more rapidly through the payment phase, re
ducing the amount of time spent waiting in the designated area and 
reducing the number of customers who must orbit in the shopping area. 

The smallest value of N (the number of payers who can occupy the 
payment space) that sustains the stability condition is 4. When the 
value of N increases, as depicted in Fig. 11b, the system becomes less 
congested, and E W[ ]OUT decreases and approaches zero when N is re
latively large greater number of customers are allowed inside the store). 
Similarly, E W[ ]SHOP decreases and approaches 1/ . As expected, in
creasing the size of the payment waiting area increases E W[ ]PAY . 

Increasing the allowed number of customers in the shopping phase 
(K) increases both E W[ ]SHOP and E W[ ]PAY . The system becomes more 
congested and greater values of K increase the rate of arrival at the 
payment area because the number of customers in the shopping area 

increases. Clearly, increasing K increases the total number of shoppers 
in the store, thus reducing E W[ ].OUT

5. The COVID-19 queueing game 

Several studies have adopted game-theoretic approaches when 
analyzing safety-related events (see Winkler et al. (2019) for a review). 
We construct and analyze a COVID-19 queueing game between the au
thority aiming to reduce the risk of infection while keeping customers 
and workers safe and a businesses that wants to minimize its costs. 
Specifically, the authority chooses the maximum number of customers 
allowed in the store, M. The objective of the authority is 

+
+

L L L L
L L

A min{ E[ ( 1)] E[ ( 1)]
E[ ( 1)]}

OUT OUT SHOP SHOP

Pay Pay
1 1 1 2 1 1

3 2 2 (14) 

where i denotes the weight the authority assigns to each measure of 
risk. It is reasonable to assume that the authority assigns a smaller 
weight to queues forming outside a store; therefore, in this case, 1
receives the smallest weighting. Store management cannot exceed the 
limit set by the authority but can choose the optimal number of cashiers 
(c) under the M-model and the optimal number of cashiers and the 
optimal size of the payment waiting space (N) under the NM-model. 

The store’s objective is to minimize customers’ weighted waiting 
times and its expenses, which are comprised of cashier salaries (c S· ) and 
the cost of maintaining the payment waiting space (N f· ). Let i denote 
the weight the store assigns to the mean waiting times for each phase 
(in line outside, shopping, and payment). Management can assign a 
different weight to each phase based on its estimates of customer dis
satisfaction from waiting in line and its concerns regarding keeping 
workers safe. Thus, the weighted waiting cost is 

+ + WE[W ] E[W ] E[ ]PAY
1 1

OUT
2 1

SHOP
3 2 . The objective of store man

agement is denoted by Z. 

+ + + +Z W c S N fmin{ E[W ] E[W ] E[ ] }PAY
1 1

OUT
2 1

SHOP
3 2 (15)  

The authority acts as a Stackelberg leader that moves first and store 
management (the follower) then moves sequentially. The game is 
solved via backward induction. First, we find the store’s best response 
for each value of M when considering the parameter values in Section 4: 

= = =µ18, 10 , 3 customers per hour. We set the hourly salary of 
a cashier as =S 100 and, to compare the expenses of the two models, set 

=f 0, β1 = 700, β2 = 100, and β3 = 900. These weights serve as 
scaling factors required because of the two units of measure (time and 
cost) and reflect the notion that (i) the dissatisfaction of customers from 
waiting in the payment phase is greater than their dissatisfaction from 
waiting outside and (ii) their dissatisfaction from waiting outside and in 
the payment phase are both much greater than their dissatisfaction 
from spending time shopping. Table 1 summarizes the store’s best re
sponse for different levels of M. For the NM-model, the minimum value 
of M for which the system is stable is 11; in the M-model, a much lower 
value of 8 sustains the stability condition. 

By substituting the store’s best response, c M( ) for the M-model and 
c M N M( ) and ( ) for the NM-model, the risk measures E L L[ ( 1)] as a 
function of M are obtained for each queue. See Figs. 12a and 12b for the 
M-model and Fig. 13 for the NM-model. 

As depicted in Figs. 12a, 12b and 13, the risk of being infected for 
customers waiting outside is much greater under the NM-model. The 
risk for customers in the shopping phase is less under the M-model than 
under the NM-model, and the risk for customers in the payment phase is 
less under the NM-model than under the M-model. Moreover, payer risk 
under the NM-model is relatively stable since the number of payers who 
can occupy the space is limited. Under the M-model, payer risk in
creases with M. 

The store’s equilibrium strategy also depends on the values of the 
weights assigned by the authority to each measure of risk. Set 

= = =1, 100, 1001 2 3 . These weights reflect the position that 

Fig. 10. Effect of number of customers allowed in the store (M) on expected 
waiting times for the M-model. 
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waiting in line outside where social distance can be maintained pre
sents a much lower risk than waiting inside the store. For this example, 
the equilibrium strategy is = =M c11, 3 under the M-model and 

= = = =M c N K16, 3, 2, 11 under the NM-model. We also 
consider a scenario in which the risk of being infected while waiting in 
line in the payment phase is greater than the risk of being infected in 
the shopping phase: = = =1, 100, 500.1 2 3 In that case, the store’s 
equilibrium strategy is = =M c9, 3 under the M-model and 

= = = =M c N K14, 3, 1, 10 under the NM-model. 
It follows from these results that, when the risk of being infected in 

the payment phase is greater than the risk of being infected in the 
shopping phase, the authority reduces the number of customers allowed 
in the store by 2: from 11 to 9 under the M-model and from 16 to 14 
under the NM-model. Because of this reduction in the number of 

a:  As a function of number of cashiers (c) b:  As a function of maximum number of 

payers who can wait (N) 

c: As a function of maximum number of 

shoppers (K) 

Fig. 11. Expected waiting times under the NM-model.  

Table 1 
The store’s best response as a function of M when β1 = 700, β2 = 100, 
β3 = 900, and f = 0.         

NM-model 

M c Z c N Z

8 4 1502.1 NA 
9 3 625.3 
10 3 504.1 
11 3 471.1 4 0 1101.9 
12 3 458.7 3 1 636.3 
13 3 453.5 3 1 507.8 
14 3 451.4 3 1 469.1 
15 3 450.4 3 1 453.12 
16 3 450 3 1 445.5 
17 3 449.9 3 1 441.7 
18 3 449.89 3 1 439.7 
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Fig. 12a. Effect of M on E L L[ ( 1)] in the M-model.  

Fig. 12b. Effect of M 11 on E L L[ ( 1)] in the M-model.  

Fig. 13. Effect of M on E L L[ ( 1)] in the NM-model.  
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customers allowed in, the store in the NM-model reduces the maximum 
number of customers in the shopping phase (K ) and the maximum 
number of customers in the payment phase (N ). 

6. Conclusion 

In this paper, we construct and analyze two special nonclassical 
multi-server queueing models to control queueing problems generated 
by social distancing constraints associated with the COVID-19 pan
demic such as “Maximum shoppers at store” and “maximum number of 
customers in checkout area.” In both models, a capacity constraint is 
imposed that limits the number of customers allowed inside the store at 
one time. The governing authority that imposes the limit acts as a 
Stackelberg leader in choosing how many customers will be allowed. 
Then, store management chooses the number of cashiers to employ to 
reduce its costs in terms of cashier salaries and the cost of dissatisfac
tion from customers waiting in line. In the second model, store man
agement can also choose a maximum number of customers who can 
occupy a separate payment area in a queue formed in front of the 
cashiers. For each model, we derive and analyze the equilibrium stra
tegies in terms of the store’s customer capacity and the number of 
cashiers. Our findings are useful and applicable for both government 
authorities imposing restrictions and the businesses subject to the re
strictions in their efforts to ensure the safety of customers and em
ployees while reducing associated costs. 
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